High-energy Emission from Magnetars
نویسنده
چکیده
The recently discovered soft gamma-ray emission from the anomalous X-ray pulsar 1E 1841-045 has a luminosity Lγ ∼ 1036 ergs s−1. This luminosity exceeds the spindown power by three orders of magnitude and must be fed by an alternative source of energy such as an ultrastrong magnetic field. A gradual release of energy in the stellar magnetosphere is expected if it is twisted and a strong electric current is induced on the closed field lines. We examine two mechanisms of γ-ray emission associated with the gradual dissipation of this current. (1) A thin surface layer of the star is heated by the downward beam of current-carrying charges, which excite Langmuir turbulence in the layer. As a result, it can reach a temperature kBT ∼ 100 keV and emit bremsstrahlung photons up to this characteristic energy. (2) The magnetosphere is also a source of soft γ-rays at a distance of ∼ 100 km from the star, where the electron cyclotron energy is in the keV range. A large electric field develops in this region in response to the outward drag force felt by the current-carrying electrons from the flux of keV photons leaving the star. A seed positron injected in this region undergoes a runaway acceleration and upscatters keV photons above the threshold for pair creation. The created pairs emit a synchrotron spectrum consistent with the observed 20-100 keV emission. This spectrum is predicted to extend to higher energies and reach a peak at ∼ 1 MeV. Subject headings: gamma rays: stars: neutron – X-rays: stars
منابع مشابه
High Energy Neutrinos from Magnetars
Magnetars can accelerate cosmic rays to high energies through the unipolar effect, and are also copious soft photon emitters. We show that young, fast-rotating magnetars whose spin and magnetic moment point in opposite directions emit high energy neutrinos from their polar caps through photomeson interactions. We identify a neutrino cut-off band in the magnetar period-magnetic field strength ph...
متن کاملModelling magnetars’ high energy emission through Resonant Cyclotron Scattering
We present a systematic fit of a model of resonant cyclotron scattering (RCS) to the X and soft γ-ray data of four magnetars, including anomalous X-ray pulsars, and soft gamma repeaters. In this scenario, non-thermal magnetar spectra in the soft X-rays result from resonant cyclotron scattering of the thermal surface emission by hot magnetospheric plasma. We find that this model can successfully...
متن کاملThe Fundamental Plane for Radio Magnetars
High magnetic fields are a distinguishing feature of neutron stars and the existence of sources (the soft gamma repeaters and the anomalous X-ray pulsars) hosting an ultra-magnetized neutron star (or magnetar) has been recognized in the past few decades. Magnetars are believed to be powered by magnetic energy and not by rotation, as with normal radio pulsars. Until recently, the radio quietness...
متن کاملVERITAS Observations of Magnetars
Magnetars are rotating neutron stars with extremely strong magnetic fields (∼ 10−10G). Xray and soft gamma-ray observations have revealed the existence of non-thermal particle populations which may suggest emission of very high energy photons. VERITAS, an array of four 12m imaging atmospheric Cherenkov telescopes, is designed to observe gamma-ray emission between 100 GeV and 30 TeV. Here we pre...
متن کاملHigh Energy Emission from Supernova Remnants
This paper discusses several aspects of current research on high energy emission from supernova remnants, covering the following main topics: 1) The recent evidence for magnetic field amplification near supernova remnant shocks, which makes that cosmic rays are more efficiently accelerated than previously thought. 2) The evidence that ions and electrons in some remnants have very different temp...
متن کاملTeV-PeV Neutrinos from Giant Flares of Magnetars and the Case of SGR 1806-20
We estimate the high energy neutrino flux from the giant flare of SGR 180620 on December 27, 2004, which irradiated Earth with a gamma-ray flux ∼ 10 times larger than the most luminous gamma-ray bursts (GRBs) ever detected. The Antarctic Cherenkov neutrino detector AMANDA was on-line during the flare, and may either have detected high energy neutrinos for the first time from a cosmic point sour...
متن کامل